Highest Common Factor and Lowest Common Multiple

The highest common factor is calculated by multiplying all the factors which appear in both lists: So the HCF of 60 and 72 is 2 × 2 × 3 which is 12. The lowest common multiple is calculated by multiplying all the factors which appear in either list: So the LCM of 60 and 72 is 2 × 2 × 2 × 3 × 3 × 5 which is 360.  
       
Some important formulas
Difference of squares 
a2 - b2 = (a-b)(a+b)
Difference of Cubes
a3 - b= (a - b)(a2+ ab + b2)

Sum of Cubes
a3 + b3 = (a + b)(a2 - ab + b2)

Formula for (a+b)2 and (a-b)2
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab +b2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a - b)3 = a3 - 3a2b + 3ab2 - b3

Find the H.C.F and L.C.M of x4 +x2 y2 +y4 , x3 –y3 , x3 +x2 y  +xy2  
1st expression   = x4 +x2 y2 +y4
                           = (x+ y2)2 – 2x2y2 + x2y2
                                     = (x+ y2)2  - x2y2
                           =( x2  +xy  +y2 ) ( x2  -xy  +y2 )
2nd expression = x3 –y3 = (x-y) ( x2  +xy  +y2 )
3rd expression = x3 +x2 y +xy2 = x( x2  +xy  +y2 )
H.C.F = ( x2  +xy  +y2 )
L.C.M = x ( x2  +xy  +y2 ) ( x2  -xy  +y2 ) (x-y)                                             

Find the H.C.F and L.C.M of a4 +a2b2 , a3 +b, ab2 +a 2b +a3
1st expression = a4 +a2b2
                         =a2(a2  + b2 )
2nd expression = a3 +b3
                          = (a+b)(a–ab + b2 )
3rd expression = ab2 +a 2b +a3
               = a(b2 +ab +a2 )    
HCF = 1
L.C.M =  a2 (a+b) (a2  + b2 ) (a–ab + b2 ) (b2 +ab +a2 )    


Find the H.C.F and L.C.M of the following expressions
1st expression = a2 +2ab + b2
                                = (a+b)(a+b)
2nd expression = b2 -  a2 +2bc +c2
                          =  b2 +2bc +c-  a2
                          = (b+c)2 - a2
            = (b + c + a ) (b + c  -   a )
3rd expression = - b2 +   a2 +2ca +c2
                              =  (a+c) - b2
                              = (a+c-b)  (a+c+ b)
H.C.F  = 1
L.C.M  =  (a+b)(a+b)(b + c + a )(b + c  -   a )(a+c-b)

Post a Comment

Previous Post Next Post